Cart 0
Advanced Analytics with Spark: Patterns for Learning from Data at Scale

Advanced Analytics with Spark: Patterns for Learning from Data at Scale

ISBN: 9781491972953
Publisher: O'Reilly Media
Edition: 2
Publication Date: 2017-06-25
Number of pages: 330
Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.
$54.98

In the second edition of this practical book, five Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world datasets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming.

You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—including classification, clustering, collaborative filtering, and anomaly detection—to fields such as genomics, security, and finance. New chapters cover PySpark and MLlib, and Embarrassingly Parallel Python.

If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find the book’s patterns useful for working on your own data applications.

With this book, you will:

Familiarize yourself with the Spark programming modelBecome comfortable within the Spark ecosystemLearn general approaches in data scienceExamine complete implementations that analyze large public datasetsDiscover which machine learning tools make sense for particular problemsAcquire code that can be adapted to many uses

Customer Reviews


Share this Product


More from this collection