Cart 0
Advanced Analytics with Spark: Patterns for Learning from Data at Scale

Advanced Analytics with Spark: Patterns for Learning from Data at Scale

ISBN: 9781491912768
Publisher: O'Reilly Media
Edition: 1
Publication Date: 2015-04-20
Number of pages: 276
Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.
$34.48

In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example.

You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications.

Patterns include:

Recommending music and the Audioscrobbler data setPredicting forest cover with decision treesAnomaly detection in network traffic with K-means clusteringUnderstanding Wikipedia with Latent Semantic AnalysisAnalyzing co-occurrence networks with GraphXGeospatial and temporal data analysis on the New York City Taxi Trips dataEstimating financial risk through Monte Carlo simulationAnalyzing genomics data and the BDG projectAnalyzing neuroimaging data with PySpark and Thunder

Customer Reviews


Share this Product